BharativaVidyaBhavan's

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester - December 2022 Examinations

Program: T.Y. B.Tech. (Electrical)
Course Code: PC-BTE501
Course Name: Electromagnetic fields and waves

Duration: 3 hrs.
Maximum Points: 100
Semester: V

Notes:

1. Question number 1 compulsory
2. Attempt any four questions out of remaining six.
3. Draw neat diagrams
4. Assume suitable data if necessary

Q.No.	Questions	Points	CO	BL	Mod. No.
1. (a)	Current in the inner and outer conductors of Fig.1 are uniformly distributed. Use Ampere circuital law to derive expression of magnetic field intensity (H) for $b \leq r \leq c$	07	2	L 3	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous listitute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester - December 2022 Examinations

2. (a)	Starting with Ampere's circuital law, derive Maxwell's equation in integral form. Obtain the corresponding relation by applying the Stoke's theorem	12	1	L3	4
2.(b)	Assume that $\mu=\mu_{1}=4 \mu H / m$ in region 1 where $Z>0$ $\mu_{2}=7 \mu H / m$ in region 2 where $Z<0$, moreover let $k=-80 \hat{a}_{x} A /$ mon the surface $Z=0$. Find $B_{2}=$? if $B_{1}=\hat{a}_{x}+2 \hat{a}_{y}+3 \hat{a}_{z} m T$.	08	3	L3	5
3. (a)	Write Maxwell's equations for static fields in point form and integral form. Derive Maxwell equations for time varying fields. Explain physical significance of each equation.	14	3	L2	6
3.(b)	Identical charges of $Q(C)$ are located at the eight comers of a cube with side of lmeter show that coulombs force on each charge has magnitude $\left(\frac{3.29 Q^{2}}{4 \pi E_{0} l^{2}}\right) N$.	06	2	L2	2
4.(a)	Derive an expression for the energy stored in static electric field of n point charges.	10	2	L2	2
4.(b)	Calculate the flux passing the portion of the plane $\emptyset=\frac{\pi}{4}$ defined by $0.02<\rho<0.06 m$ and $0<Z<2 \mathrm{~m}$ for a current of 4 A . The flux density at a point, distance ρ from a long filamentary curtent I in $\hat{a}_{\mathbf{z}}$ direction is given by $\bar{B}=\frac{\mu_{0} I}{2 \pi \rho} \hat{a}_{\varnothing}$. (Draw neat diagram)	05	1	L2	4
4.(c)	Explain in short boundary conditions in electric field and magnetic field.	05	1	L1	3,5
5.(a)	Given the conduction current density in lossy dielectric as $J_{c}=$ $0.02 \sin 10^{9} t\left(A / m^{2}\right)$. find the displacement current density if $\sigma=10^{2} S / m$ and $\epsilon_{r}=8.5$.	05	1	L3	6
5.(b)	Find the voltage across each dielectric in the capacitor shown in Fig. 2 when the applied voltage is 500 V . (Given: $\varepsilon_{r 1}=5 \& \varepsilon_{2}=\varepsilon_{0}$)	05 $\sqrt{8}$	2	L3	3

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester - December 2022 Examinations

5.(c)	Derive an expression for the electric field intensity due to an infinite line charge.	10	2	L2	2
6.(a)	Derive Poisson's and Laplace's equations:	05	1	L2	3
6.(b)	Given electromagnetic wave equations are $\begin{aligned} & \bar{E}=-E_{m} \sin (\omega t+\beta z) \hat{a}_{z} \\ & \bar{H}=H_{m} \sin (\omega t+\beta z) \hat{a}_{y} \end{aligned}$ Sketch E \& H at $\mathrm{t}=0$.	03	3	L2	6
6.(c)	Given that $E_{1}=9 \widehat{a_{x}}-2 \widehat{a_{y}}+15 \widehat{a_{2}} V / m$ at the charge free dielectric interface of Fig. 3 . Find D_{2} and angle θ_{1} and θ_{2} Fig. 3	06	2	L3	3
6.(d)	A linear, homogeneous, isotropic dielectric material has permittivity $\varepsilon_{r}=3.6$ and is covering the space between $\mathrm{z}=0$ and $\mathrm{z}=1$. If $\mathrm{V}=-6000 \mathrm{z} \mathrm{V}$ in material. Find- (i) \bar{E} (ii) \bar{P} (iii) ρ_{s}.	06	4	L3	3
7.(a)	Write short note on 1. Wave Equations 2. Reflected waves and intrinsic impedance for various materials	10	1	L2	7
7.(b)	State Stoke's theorem. A circular conductor of radius $r_{0}=1 \mathrm{~cm}$ has internal field $H=\frac{10^{4}}{r}\left(\frac{1}{a^{2}} \sin a r-\frac{r}{a} \cos a r\right){\overline{a_{\emptyset}}}^{(}(A / m)$ Where, $\mathrm{a}=\frac{2 \pi}{r_{r}}$. Find the total current in the conductor.	07	3	L3	4
7.(c)	Use spherical coordinate to express differential volume, integrate to obtain the volume defined by $1 \leq r \leq 2,0 \leq \theta \leq \frac{\pi}{2}$ and $0 \leq \emptyset \leq \frac{\pi}{2}$.	03	2	L1	1

END-SEMESTER EXAMINATION DECEMBER 2022

Program: TY BTech (Electrical) LeM V

Course Code: PC-BTE-502

Course Name: Control System

Duration: 3Hr
Maximum Points: 100

Semester: V

Note: 1) Answers to all sub questions should be grouped together. 2) Figures to the right indicate full marks. 3) In the absence of any data, make suitable assumptions and justify the same. 4) Use graph paper for plotting Root Locus and semilog paper for Frequency response.

$\begin{aligned} & \text { Q. } \\ & \text { No } \end{aligned}$	Questions	$\begin{gathered} \text { Poin } \\ \text { ts } \end{gathered}$	CO	BL	Mod ule No.
1a)	Consider a second order system with transfer function $\operatorname{Gcl}(s)=\frac{50}{\left(s^{2}+20 s+50\right)}$ Calculate steady state value of the output, steady state error, peak time, \% overshoot and settling time when unit step signal is applied as an input.	05	02	02	02
1b)	A system has transfer function $G(s)=\frac{10 s^{3}+5 s^{2}+10 s+5}{(s+1)(s+4)(s+6)}$. Obtain state space representation of the system in controller canonical form.	05	02	02	06
1c)	Define Gain Margin and Phase Margin. Explain how these margins are measured in Bode Plot.	05	02	02	04
1d)	What will be the output of a following system when input $r(t)=5 u(t)$. $\xrightarrow[r(t)]{ } \rightarrow G(s)=\frac{18}{s+6} \longrightarrow y(t) \quad G(s)=\frac{18}{s+6}$	05	01	02	01
2a)	Plot Root Locus of a closed loop unity feedback system with plant transfer function $G(s)=\frac{K}{(s+1)(s+2)(s+7)}$	15	02	02	03
2b)	Consider the system in Q2a). Design the value of K to get $\%$ overshoot of 20%.	05	02	03	03
3a)	Plot frequency response (Bode plot) of a unity feedback system with $G(s)=\frac{100(s+20)}{(s+5)(s+10)(s+50)}$ Calculate Gain Margin and Phase Margin from the plot.	12	02	02	04
3b)	Plot polar plot of a system having loop transfer function $G H(s)=\frac{10}{s^{2}(s+5)}$	08	02	02	04

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

END-SEMESTER EXAMINATION DECEMBER 2022

4a)	Consider a system as given below- Determine resultant transfer function of the system. Determine the output of the system if the input applied is $\mathrm{r}(\mathrm{t})=10 \mathrm{u}(\mathrm{t})$	10	02	02	02
4b)	Consider following system with $G(s)=\frac{10}{(s+2)}$ and $H(s)=\frac{(s+1)}{s(s+5)}$ Test if the system is stable. Add proportional controller in forward path with transfer function $\mathrm{C}(\mathrm{s})=\mathrm{Kp}$. Determine the range of Kp for which system is stable.	10	03	03	03
5a)	Consider a system with state equations as - $\begin{aligned} & \dot{x}=\left[\begin{array}{cc} 0 & 1 \\ -2 & -3 \end{array}\right]\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right]+\left[\begin{array}{l} 0 \\ 1 \end{array}\right] u(t) \\ & y=\left[\begin{array}{ll} 1 & 3 \end{array}\right] x \end{aligned}$ Determine the state transition matrix, state space solution of the system (using state space analysis) when input applied is $u(t)=1$ unit for $t \geq 0$. (unit step)	10	02	03	06
5b)	For the system in Q 5a), calculate eigen values of the system, eigen vectors. Comment on the stability of the system. Transform the system in Modal form.	10	02	03	06
6a)	Define Controllability and Observability. Test if a system with state space representation $\dot{x}=\left[\begin{array}{rr} 1 & -1 \\ 0 & -1 \end{array}\right]\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right]+\left[\begin{array}{l} 1 \\ 1 \end{array}\right] u$	10	02	03	06

END-SEMESTER EXAMINATION DECEMBER 2022

	$y=\left[\begin{array}{ll} 1 & 0 \end{array}\right] x$ Is controllablc? Also test if it is observable.				
6b)	Write transfer function of PI controller, PD controller and PID controller. Consider a first order system as shown below with PI controller. Take $\mathrm{Kp}=1$ and $\mathrm{Ki}=2$. Calculate \%overshoot and steady state error of the system when input is unit step.	10	03	03	05
7a)	Calculate resonant peak and bandwidth of a system having closed loop system transfer function $\operatorname{Gcl}(s)=\frac{5}{\left(s^{2}+s+5\right)}$	05	02	03	04
7b)	The equations that describe dynamics of a motor control system are $\begin{aligned} & e_{a}(t)=R_{a} l_{a}(t)+L_{a} \frac{d i_{a}(t)}{d t}+k_{b} \frac{d \theta_{m}(t)}{d t} \\ & T_{m}(t)=k_{i} l_{a}(t) \\ & T m(t)=J \frac{d^{2} \theta_{m}}{d t^{2}}+B \frac{d \theta_{m}}{d t}+k \theta_{m} \\ & e_{a}=k_{a} e(t) \\ & e^{(t)}=k_{s}\left[\theta_{r}(t)-\theta_{m}(t)\right] \end{aligned}$ Obtain state space model of the system considering the state variables as $x_{1}=0 \mathrm{~m}, x_{2}=\operatorname{dom} / d t, x_{3}=i_{a}(t)$. Consider Rutput $y(t)=0 \mathrm{~m}$, input $u(t)=Q$		01	02	01
7c)	What are the different nonlinearities present in the system? Describe any two of them.	10	04	01	07

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEM EXAMINATION DECEMBER 2022

Program: T. Y. B. Tech Electrical Engineering Course Code: PC-BTE503

Course Name: Electrical Machines II
Notes: (1) Attempt any five questions.
(2) Graph papers are required.
(3) Draw neat diagrams wherever necessary.

Q.No.	Questions	Points	CO	BL	Module No.
Q. 1 (a)	A $4.5 \mathrm{~kW}, 400 \mathrm{~V}, 50 \mathrm{~Hz}, 3$-phase delta connected induction motor gave the following test results: No-load test (line values): $400 \mathrm{~V}, 4.2 \mathrm{~A}, 480 \mathrm{~W}$. Blocked-rotor test (line values): $215 \mathrm{~V}, 15 \mathrm{~A}, 1080 \mathrm{~W}$. Stator and rotor ohmic losses at standstill are assumed equal. Draw the induction motor circle diagram and calculate: (a) Line current, power factor, slip, torque and efficiency at full load. (b) Maximum power output and maximum power input.	15	01	$\begin{aligned} & \mathrm{BL} \\ & 1,2 \end{aligned}$	01
Q. 1 (b)	Describe the principle of operation of a 3-phase induction motor. Explain why the rotor is forced to rotate in the direction of rotating magnetic field. Also, explain why the rotor of induction motor can never attain synchronous speed.	05	01	$\begin{gathered} \text { BL } \\ 2 \end{gathered}$	01
Q. 2 (a)	Derive the torque expression for a salient pole synchronous machine. Draw the torque-speed characteristics of the synchronous machine for generator and motoring modes.	12	02	$\begin{aligned} & \mathrm{BL} \\ & 1,2 \end{aligned}$	02
Q. 2 (b)	A machine has 10 slots in the stator. It is wound for forming two magnetic poles. The numbers of conductors in the slot are as follows. Assuming that \mathbb{N} and OUT are the direction of the current flowing through the conductors, and if all these conductors form a phase coil of 150 turns, and assuming that the phase current is 1 Amp , draw the MMF distribution in the airgap of the machine.	08	02	$\begin{aligned} & \text { BL } \\ & 1,2 \end{aligned}$	02

[^0]Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEM EXAMINATION DECEMBER 2022

	Slot 1	10	IN	Slot 6	50	OUT				
	Slot 2	20	IN	Slot 7	40	OUT				
	Slot 3	30	IN	Slot 8	30	OUT				
	Slot 4	40	IN	Slot 9	20	OUT				
	Slot 5	50	IN	5lot 10	10	OUT				
Q. 3 (a)	Draw the phasor diagrams of the synchronous machine, a) acting as generator and supplying the lagging power factor current b) acting as motor and drawing the lagging power factor current. Comment on the nature of armature reaction in these cases.						12	03	$\begin{aligned} & \text { BL } \\ & 1,2 \end{aligned}$	03
Q. 3 (b)	Draw the V and inverted V curves of the synchronous motor.						08	03	BL	03
Q. 4	(a) What is hunting? How can it be prevented? (b) Why the synchronous motor cannot be started with field winding excited? (c) Why single phase induction motor is not self-starting? What are the types of single phase induction machine? (d) A doubly salient machine has more torque density. Justify this.						$\begin{aligned} & 05 \\ & 05 \\ & 05 \\ & 05 \\ & \hline \end{aligned}$	02 03	BL	
Q. 5 (a)	A $6.6 \mathrm{kV}, 3$-phase, 50 Hz , star-connected alternator gave the following data for open circuit, short circuit and full-load zero-power factor tests:						15	02	$\begin{aligned} & \text { BL } \\ & 1,2 \end{aligned}$	02
	$\mathrm{I}_{\mathrm{f}}(\mathrm{A})$	3.2	5.00	7.50	10.00	- 14.00				
	$\mathrm{E}_{\mathrm{f}}(\mathrm{kV})$	3.10	4.90	6.60	7.50	8.24				
	I_{sc} (A)	500	778	1170	--	- $-\cdots$				
	Z.P.F. terminal voltage (kV)	----	-1.85	4.24	5.78	7.00				
	Per phase armature resistance is 0.2Ω. Calculate the voltage regulation at full load current of 500 A at 0.8 p .f. lagging by									

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM EXAMINATION DECEMBER 2022

	the (1) e.m.f. method (2) m.m.f. method and (3) z.p.f. method.				
Q. 5 (b)	Explain the different conditions for parallel operation of alternators in detail.	05	02	$\begin{aligned} & \text { BL } \\ & 1,2 \end{aligned}$	04
$\begin{aligned} & \text { Q. } 6 \\ & \text { (a) } \end{aligned}$	Explain clearly the terms direct-axis and quadrature-axis synchronous reactances. How are these determined in the laboratory? The results of slip test on a star-connected alternator are given below: $\begin{aligned} & V_{\max }=100 \mathrm{~V}, \mathrm{~V}_{\min }=96 \mathrm{~V} \\ & \mathrm{I}_{\max }=10 \mathrm{~A}, \mathrm{I}_{\min }=7 \mathrm{~A} \end{aligned}$ All are line values. Neglecting resistance, Calculate X_{d} and Xq in ohms.	12	02	$\begin{aligned} & \text { BL } \\ & 1,2 \end{aligned}$	05
Q. 6 (b)	A $400 \mathrm{~V}, 50 \mathrm{~Hz}$, 3-phase star-connected squirrel-cage induction motor gave the following test results: No load test (line values) : $400 \mathrm{~V}, 9 \mathrm{~A}, 560 \mathrm{~W}$ Blocked rotor test (line values) : $210 \mathrm{~V}, 36 \mathrm{~A}, 4820 \mathrm{~W}$ The effective stator resistance is 0.72Ω per phase. Calculate the equivalent circuit parameters.	08	01	$\begin{aligned} & \text { BL } \\ & 1,2 \end{aligned}$	01
Q. 7 (a)	Write short notes on the following. (1) shaded pole motor. (2) brushless DC motor	$\begin{aligned} & 05 \\ & 05 \end{aligned}$	03	$\begin{aligned} & \text { BL } \\ & 1,2 \end{aligned}$	06 07
Q. 7 (b)	Describe the construction, principle of operation and applications of stepper motor and also state their types.	$\begin{gathered} 03+03 \\ +02+02 \end{gathered}$	03	$\begin{aligned} & \text { BL } \\ & 1,2 \end{aligned}$	07

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai 400058

End Semester - December 2022 Examinations

Program: B. Tech. Electrical

Course Code: PC-BTE 504
Course Name: Power System I
Notes: Attempt any 5.

Duration: 3 hours
Maximum Points: 100
Semester: V

End Semester - December 2022 Examinations

4	$\begin{array}{l}\text { A power system with equipment ratings is as shown below. Select Gl as base and find p.u } \\ \text { values of remaining equipments. Draw impedance diagram showing these values. }\end{array}$

Equipment	kV	MVA	X1 (p.u.)
G 1	20	90	0.16
G 2	18	90	0.2
T1	$20 / 200$	80	0.09
T2	$200 / 20$	80	0.09
Line			120 ohm

5a We know for a lossless transmission, velocity of propagation of voltage or current wave is given as $\mathbf{v}=\frac{1}{\sqrt{L C}}$ then prove that for an overhead transmission line, it becomes approximately equal to velocity of light. Hint: start with basic equations which are used to calculate $L \& C$ parameters of the transmission line. Prove that p.u. impedance of a transformer referred to primary or secondary remains same.
5 c The load shown in figure below consists of a resistance R in parallel with a capacitor of reactance X. The load is fed from a single phase AC supply through a line of impedance $8.4+\mathrm{j} 11.2 \mathrm{ohm}$. The RMS voltage across load is 1200 V (rms) and the load is taking 30 kVA at 0.8 p.f. leading. A) Find the values of R and X. B) Determine the supply voltage.

6a	What is Sag in transmission line? Derive expression for calculation of sag in case of tower supports are of equal heights.	10	5	1,	6
6 b	What is SIL loading of a transmission line? How do you calculate it? Starting from basic long line equations for voltage and current phasor at any point along the line i.e. $\mathrm{V}(\mathrm{x})$ and $\mathrm{I}(\mathrm{x})$, prove that if the line is loaded with exact SIL loading, voltage and current magnitudes remain constant over the length of the line. i.e., prove that $\|V(\mathbf{x})\|=\left\|V_{R}\right\| \text { and }\|I(x)\|=\left\|I_{R}\right\| .$	10	2	2, 3, 4	2
7a	Draw a neat diagram of construction of a 3 core cable with various layers of protection around it. Explain the purpose of each layer and material used for the same.	10	2	1, 2	2
b	Explain in detail the factors affecting the resistivity of soil. Also discuss the experimental set up used for measurement of earth resistance.	10	6	1,	7

ENDSEM EXAMINATION DECEMBER 2022

Program: Electrical Engineering $斤 .4, B, T$ wt
Course Code: PC-BTE 505
Course Name: Power Electronics

Notes:

 Duration: 3 hoursMaximum Points: 100
Semester: V

- Solve any five questions out of seven questions
- Make suitable assumptions wherever necessary
- Combine all the sub-questions in a given question together
- All Diagrams should be neat and clear
- Draw neat diagram if mentioned in the question

3. B)	Derive filter critical or minimum inductor and capacitor for DC to DC converter to work it as a boost converter. Derive output voltage in terms of supply voltage.	10	3	3	6
4. A)	A single phase full bridge diode rectifier is supplied from 230 V , 50 Hz source. The load consists of $\mathrm{R}=10 \mathrm{ohm}$ and a large inductance so as to render the load current constant. Determine: average value of output voltage and output current	5	2	3	3
4. B)	A DC battery of 150 V is charged using single phase half wave diode rectifier by using 8 ohm resistor. The ac supply is of 230 V, 50 Hz . Find the average charging current.	10	2	3	3
4. C)	Explain the effect of source side and load side inductance on single phase rectifier?	5	2	2	3
5. A)	Compare voltage source and current source Inverters. With the help of circuit diagram and explain single phase current source inverter.	8	4	3	5
5.B)	Explain Space Vector Modulation technique using example of V / F speed control of three phase induction motor.	12	4	3	5
6. A)	The single phase full-wave uncontrolled rectifier is used for a resistive load. With the help of circuit diagram explain what required to be used to connect to the rectifier to reduce voltage and current ripples in load voltage and current waveforms?	8	2	4	3,4
6. B)	Which power electronics switches are required to be used for following applications 1. three phase voltage source inverter 2. current source inverter 3. DC to DC converters 4. fan speed regulators	4	1	3	1.2
6. C)	Which characteristic of SCR makes it very much useful in controlled rectification and why SCRs are least used in voltage source inverters?	8	1	4	1,2
7.	Write short notes on following topics 1. single phase voltage controllers 2.Gating requirements of single phase voltage controllers for any of the loads	$\begin{aligned} & 12 \\ & 8 \end{aligned}$	1	3	7

Program: Electrical T4. 3. Tach (towN) Course Code: PE-BTE502
Course Name: Computer Architecture

- Attempt any $\mathbf{5}$ questions from the given 7 questions.
- Make suitable assumptions wherever necessary.

Duration: 3 hours
Maximum Points: 100
Semester: V

4a.	Classify the system memory with respect to the closeness to the process with neat diagram and explain each component.	06	1	4	1.4.1
4 b .	If DMA wants access to the system bus it needs to access it when processor does not need it. Justify the above statement with the concept of cycle stealing. Support the justification with diagram.	04	3	5	1.4.1
4c.	Consider a pipelined processor with the following four stages- IF : Instruction Fetch ID : Instruction Decode and Operand Fetch EX : Execute WB : Write Back The IF, ID and WB stages take one clock cycle each to complete the operation. The number of clock cycles for the EX stage depends on the instruction. The ADD and SUB instructions need I clock cycle and the MUL instruction need 3 clock cycles in the EX stage. Operand forwarding is used in the pipelined processor. What is the number of clock cycles taken to complete the following sequence of instructions?	06	1	3	2.2.3
4d.	Decide the address bus size of that computer which can handle the main memory size of 8 GB . If 24 bits are required to address the cache memory then judge the size of the cache memory required.	04	1	3	2.2.3
5 a .	Solve $(0111)_{2} /(10)_{2}$ using the restoration division algorithm.	06	2	3	2.1.3

END SEM Exam - December 2022 Examinations

5b.	What is dynamic branch prediction? Explain how1-bit and 2 bit predictor methods are used for dynamic branch prediction.	10	3	2	1.4.1
5 c .	Differentiate between Von Neumann and Harvard Architecture	04	1	5	2.2 .4
6 a.	What does ISA stand for? Discuss the Software and Hardware abstraction used in ISA.	06	2	5	1.3.1
6 b .	Compare RISC v/s CISC w.r.t. implementation used for designing the Control unit.	10	2	5	2.2.4
6c.	Segment Descriptor is 23AD577834B34970. Calculate the starting address and the size of the segment.	04	3	3	2.2.3
7a.	Discuss the terms 1. Micro operations 2. Micro instructions 3. Micro program	10	2	2	1.4.1
7 b.	Design a cache memory and main memory system for the following requirements. 1. Main memory is of the size 64 KB 2. Cache memory is of the size 4 KB 3. Block size is 8 B Implement the system using i. Direct Mapping. ii. 2-way set associative Mapping. Compare the two designs that have been implemented.	10	1	6	2.2.4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION DECEMBER 2022
Ta
Course Code: PE-BTE 501
Course Name: Digital Signal Processing

Duration: $\mathbf{3 ~ H r}^{\mathbf{H}}$

Note: Solve any five questions.
Maximum Points: 100
Semester: V
Assume suitable data if required and justify the assumptions.

END SEMESTER EXAMINATION DECEMBER 2022

	by $y[n]=x[n]-5 y[n-1]$ with initial condition $\mathrm{y}[-1]=1$				
b	An LTI system has impulse response is $h[n]=x_{1}[n-1] * x_{2}[n]$. The z transform of two signals $x_{1}[n]$ and $x_{2}[n]$ are given by $X_{1}(z)=2-4 z^{-1}$ and $X_{2}(z)=1+5 z^{-1}$ Determine the output of the system if input is $x[n]=\delta[n-1]$.	07	. 02	05	02
C	A discrete time LTI system is given by $H(z)=\frac{z(3 z-4)}{(z-0.5)(z-3)}$ Specify ROC and determine $h[n]$ if the system is (i) stable (ii) Causal	06	02	03	02
3a	Calculate \% saving in calculation of 1024 point radix 2 FFT, when compare with direct DFT	04	03	03	03,04
b	Compute DFT of $x[n]=\{2,2,0,1\}$. Plot magnitude and phase spectrum	04	03	03	03
c	Determine response of LTI system when input $x[n]=\{-2,-1,-1,0,2\}$ and impulse response $\mathrm{h}[\mathrm{n}]=\{1,-1,-1,1\}$ by FFT-IFFT.	12	03	05	03,04
4 a	Design a linear phase low pass FIR filer using Hamming window with cut off frequency $\omega_{c}=0.2 \pi \mathrm{rad} / \mathrm{sample}$ and order of the filter=8. Plot magnitude response of the designed filter. Hamming window function $w[n]=0.54-0.46 \cos \frac{2 \pi n}{M-1}$ where M is the length of the filter	10	04	06	05
b	of length 11 which has symmetric impulse response. The frequency response of the same satisfies the condition $H\left(\frac{2 \pi k}{11}\right)=1 \quad \text { for } k=0,1,2,3 \text { and }=0 \quad \text { for } k=4,5$	10	04	05	05
5 a	Design a low pass Butterworth filter using bilinear transformation with $\mathrm{T}=0.1 \mathrm{sec}$ and the following specifications $\begin{aligned} & 0.707 \leq\left[H\left(e^{j w}\right)\right] \leq 1 \text { for } 0 \leq w \leq 0.45 \pi \\ & {\left[H\left(e^{w w}\right)\right] \leq 0.2 \text { for } 0.65 \pi \leq w \leq \pi} \end{aligned}$ Verify the design by sketching the magnitude response	12	04	06	06
b	Derive an expression to determine order of Chebyshev filter if passband, stopband attenuation, passband stopband cutoff frequencies are given	04	04	03	06

Bharatiya Vidya Bhavan's
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION DECEMBER 2022

c	Compare impulse invariance method with bilinear transformation method	04	04	03	06
6 a.	Prove that FIR filter with even and odd length satisfying anti symmetry condition has linear phase	05	04	04	05
b	Explain how the window function is selected to design FIR filter. Explain the effect of window selected on frequency response of FIR filter	05	04	02	05
	For the analog filter H(s) determine H(z) using $s+1$	$H(s)=\frac{s)}{(s+2)(s+3)}$ and $T=0.3$ sec 1. Impulse invariance method 2. Bilinear transformation method 3. Matched z transformation method In each case show if the stability is retained in z domain.	10	04	03
7	Explain in detail how discrete time signal processing is applied for the following system/ application 1. RADAR system to 2. Image restoration 3. Prediction of stock's future price 4. Noise cancellation in speech signal	06			

[^0]: $1 \mid$ Page

